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We provide supplemental information for the article “Biased Assimilation, Homophily, and the
Dynamics of Polarization” submitted to Proceedings of the National Academy of Sciences. This
document contains proofs of the theorems stated in the paper. Additionally, we state and prove
a less restrictive version of Theorem 3 showing that in two-island networks with non-homogeneous
opinions, if the initial opinions are sufficiently far apart and if b ≥ 1, the biased opinion formation
process produces polarization.

1 Proof of Theorem 1

Recall that

x(t+ 1) :=
wx(t) + (x(t))bs

w + (x(t))bs+ (1− x(t))b(1− s)
Equivalently,

x(t+ 1)
1− x(t+ 1)

=
wx(t) + (x(t))bs

w(1− x(t)) + (1− x(t))b(1− s)
=

w + (x(t))b−1s

w + (1− x(t))b−1(1− s)
x(t)

1− x(t)
(1.1)

First we will show that if x(t) = x̂, then for all t′ > t, x(t′) = x̂.

Lemma 1.1. Assume b 6= 1. Fix t ≥ 0. Let x(t) = x̂. Then for all t′ > t, x(t′) = x̂.

Proof. To prove the lemma, it suffices to show that x(t+ 1) = x(t) = x̂. Recall that

x̂ :=
s1/(1−b)

s1/(1−b) + (1− s)1/(1−b)

Or equivalently, (
x̂

1− x̂

)1−b
=

s

1− s

This implies that when x(t) = x̂, x(t)b−1s = (1− x(t))b−1(1− s). Substituting this in (1.1), we get
that

x(t+ 1)
1− x(t+ 1)

=
x(t)

1− x(t)

Or equivalently, x(t+ 1) = x(t).

Next we will show that when b > 1, x̂ is an unstable equilibrium.

Lemma 1.2. Let b > 1. Fix t ≥ 0.

1. If x(t) > x̂, then x(t+ 1) > x(t).

2. If x(t) < x̂, then x(t+ 1) < x(t).

Proof. Again, recall that (
x̂

1− x̂

)1−b
=

s

1− s
Therefore, if x(t) > x̂, it implies that

x(t)
1− x(t)

>
x̂

1− x̂
⇒
(

x(t)
1− x(t)

)1−b
<

(
x̂

1− x̂

)1−b
=

s

1− s
(since b > 1)
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Or equivalently, (x(t))b−1s > (1− x(t))b−1(1− s). Substituting this in (1.1), we get that

x(t+ 1)
1− x(t+ 1)

>
x(t)

1− x(t)

Or equivalently, x(t+ 1) > x(t).
By a similar argument, if x(t) < x̂, then(x(t))b−1s < (1 − x(t))b−1(1 − s). Again, substituting

this in (1.1), we get that
x(t+ 1)

1− x(t+ 1)
<

x(t)
1− x(t)

Or equivalently, x(t+ 1) < x(t).

Next we will show that when b > 1, either limt→∞ x(t) = 1 or limt→∞ x(t) = 0.

Lemma 1.3. Let b > 1. Fix t ≥ 0.

1. If x(t) > x̂, then limt→∞ x(t) = 1.

2. If x(t) < x̂, then limt→∞ x(t) = 0.

Proof. For the proof, we will assume that x(t) > x̂ and show that limt→∞ x(t) = 1. The case when
x(t) < x̂ can be argued in an analogous way.

By definition, we know that for all t ≥ 0, x(t) ∈ [0, 1]. Further, from Lemma 1.2, we know
that the sequence {x(t′)t′≥t} is strictly increasing. Since the sequence is strictly increasing and
bounded, it must converge either to 1 or to some value in the interval [x(t), 1). Consider the
function g : [0, 1]→ R defined as

g(y) :=
w + ybs

w + ybs+ (1− y)b(1− s)
− y

Observe that for all t ≥ 0, x(t+ 1)− x(t) = g(x(t)). Therefore,

(a) for all y ∈ [x(t), 1), g(y) > 0 (since, by Lemma 1.2, the sequence {x(t′)t′→t} is strictly increas-
ing), and

(b) g(1) = 0.

For the purpose of contradiction, assume that limt→∞ x(t) = a, where x(t) ≤ a < 1. This implies,
for every ε > 0, there exists a t(ε) such that for all t′ ≥ t(ε), x(t′ + 1) − x(t′) < ε, or equivalently,
that for all t′ ≥ t(ε), g(x(t′)) < ε.

Let miny∈[x(t),a] g(y) = c. It implies for all y ∈ [x(t), a], g(y) ≥ c. From (a), it follows that c > 0.
Setting ε = c, our analysis implies the following two properties of g: (1) for all t ≥ 0, g(x(t)) ≥ c,
and (2) for all t′ ≥ t(ε), g(x(t′)) < c, which contradict each other. This completes the proof by
contradiction.

Using a similar argument we can show that when b < 1, x̂ is a stable equilibrium.

Lemma 1.4. Let b < 1. Fix t ≥ 0.

1. If x(t) > x̂, then x(t+ 1) < x(t).

2. If x(t) < x̂, then x(t+ 1) > x(t).

Lemma 1.5. Let b < 1. Then, limt→∞ x(t) = x̂.
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2 Proof of Theorem 2

Recall that since bi = 0, the opinion of node i at time t+ 1 is given by

xi(t+ 1) =
wiixi(t) +

∑
j∈N(i)wijxj(t)

wii + di
(2.1)

where recall that di :=
∑

j∈N(i)wij is the weighted degree of node i. Let LG be the weighted
laplacian matrix of G. Recall that LG is given by

(LG)ij =


di, if i = j

−wij , if (i, j) ∈ E
0, otherwise

Now consider the vector LGx(t). The ith entry of the vector is given by

(LGx(t))i = dixi(t)−
∑
j∈N(i)

wijxj(t) = dixi(t) + wiixi(t)−

wiixi(t) +
∑
j∈N(i)

wijxj(t)


= (di + wii)(xi(t)− xi(t+ 1)) (from (2.1))

Equivalently, in matrix notation,

x(t+ 1) = (I −DLG)x(t) (2.2)

where, D is a diagonal matrix such that Dii = 1/(di +wii). Note that since G is connected, di > 0,
and therefore Dii is finite. Consider the difference η(G,x(t + 1)) − η(G,x(t)). Observe that for a
vector y ∈ [0, 1]n, η(G,y) = y>LGy. Therefore, we have that

η(G,x(t+ 1))− η(G,x(t)) = (x(t+ 1))>LG(x(t+ 1))− (x(t))>LGx(t)

= (x(t))>(I −DLG)>LG(I −DLG)x(t)− (x(t))>LGx(t) (from (2.2))

= (x(t))> ((LG − LGDLG)(I −DLG)− LG) x(t) (since LG is symmetric)

= (x(t))> (LG − LGDLG − LGDLG − LGDLGDLG − LG) x(t)

= (x(t))> (LGDLGDLG − 2LGDLG) x(t)

= (x(t))>L>GD
1/2((D1/2LGD

1/2 − 2I))D1/2LGx(t) (since LG is symmetric)

= y>(D1/2LGD
1/2 − 2I)y (where y := D1/2LGx(t))

Thus, in order to show that η(G,x(t + 1)) − η(G,x(t)) ≤ 0, it suffices to show that for all vectors
y ∈ Rn, y>D1/2LGD

1/2y ≤ 2||y||22. We prove this as Lemma 2.1.

Lemma 2.1. Consider an arbitrary weighted undirected graph G = (V,E,w) over n nodes. Let
LG be the weighted laplacian matrix of G. Let D be an n × n diagonal matrix such that for i =
1, . . . , n, Dii = 1/(di +wii), where di =

∑
j∈N(i)wij is the weighted degree of i in G. Let y ∈ Rn be

an arbitrary vector. Then, y>D1/2LGD
1/2y ≤ 2||y||22.

Proof. For i = 1, . . . , n, let ri := di + wii. Let P := D1/2LGD
1/2. Then,

Pij =


di
ri
, i = j

−wij√
rirj

, (i, j) ∈ E
0, otherwise
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Then, we have that

y>Py =
∑
i,j

Pijyiyj =
n∑
i=1

Piiy
2
i + 2

∑
(i,j)∈E

Pijyiyj =
∑
i

di
ri
y2
i − 2

∑
(i,j)∈E

wij√
rirj

yiyj

=
∑
i

 1
ri
y2
i

∑
j∈N(i)

wij

− 2
∑

(i,j)∈E

wij√
rirj

yiyj

=
∑

(i,j)∈E

wij

(
y2
i

ri
+
y2
j

rj

)
− 2

∑
(i,j)∈E

wij√
rirj

yiyj

=
∑

(i,j)∈E

wij

(
yi√
ri
− yj√

rj

)2

= −
∑

(i,j)∈E

wij

(
yi√
ri

+
yj√
rj

)2

+ 2
∑
i

di
ri
y2
i

≤ −
∑

(i,j)∈E

wij

(
yi√
ri

+
yj√
rj

)2

+ 2
∑
i

y2
i (since di ≤ ri)

≤ 2||y||22

3 Proof of Theorem 3

To prove the theorem, we begin by making three simple observations that hold for all b ≥ 0. The
first observation follows directly from the symmetry of nodes in each set V1 and V2.

Lemma 3.1. Consider nodes i, j ∈ V such that either both i, j ∈ V1 or both i, j ∈ V2. Then for all
t ≥ 0, xi(t) = xj(t).

The next observation allows us to focus on only analyzing the equilibrium opinion of nodes in
V1.

Lemma 3.2. Consider a node i ∈ V1 and a node j ∈ V2. Then, for all t ≥ 0, xi(t) = 1− xj(t).

Proof of Lemma 3.2. By induction.
Induction hypothesis: Assume that the statement holds for some t ≥ 0.
Base case: The statement holds for t = 0 by assumption in the theorem statement.
We will now show that the statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
(3.1)

where di = n(ps + pd) and, by Lemma 3.1, si(t) = n(psxi(t) + pdxj(t)). On the other hand,

xj(t+ 1)
1− xj(t+ 1)

=
(xj(t))b

(1− xj(t))b
sj(t)

dj − sj(t)
(3.2)
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where sj(t) = n(psxj(t) + pdxi(t)), and dj = n(ps + pd) = di. By the induction hypothesis, we know
that xi(t) = 1− xj(t). It follows that Si(t) = di − sj(t). Substituting this into (3.1), we get

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
=

(1− xj(t))b

(xj(t))b
dj − sj(t)
sj(t)

=
1− xj(t+ 1)
xj(t+ 1)

where the last equality follows from (3.2). It follows that xi(t+ 1) = 1− xj(t+ 1).
This completes the inductive proof.

Lemma 3.2 implies that if we prove the theorem statement for nodes in V1, we get the proof for
nodes in V2 for free. So, in the rest of the proof, we only make statements about nodes in V1. The
third observation lower bounds the opinions of nodes in V1.

Lemma 3.3. Consider a node i ∈ V1. For all t ≥ 0, xi(t) ∈ [12 , 1].

Proof of Lemma 3.3. It is easy to see that for all t ≥ 0, xi(t) ≤ 1. We will prove that xi(t) ≥ 1
2 by

induction over t.
Base case: The statement holds for t = 0 by assumption in the theorem statement.
Induction hypothesis: Assume that the lemma statement holds for some t ≥ 0, i.e., assume that

xi(t) ≥ 1
2 for some t ≥ 0.

We will show that the lemma statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
Si(t)

di − si(t)

≥ (xi(t))b

(1− xi(t))b
(since si(t) > di − si(t))

≥ 1 (since xi(t) ≥
1
2

by the induction hypothesis, and b ≥ 0)

This implies xi(t+ 1) ≥ 1
2 , completing the inductive proof.

Recall that i’s opinion at time t+ 1 is given by

xi(t+ 1) =
(xi(t))bsi(t)

(xi(t))bsi(t) + (1− xi(t))b(di − si(t))

where si(t) = n(psxi(t) + pd(1− xi(t))), and di = n(ps + pd). Now consider the equation

xi(t+ 1) = xi(t) (3.3)

We will show that if b ≥ 1 or b < 2
hG+1 , (3.3) has no solution in (1

2 , 1), whereas if 1 > b ≥ 2
hG+1 ,

there exists a unique solution to (3.3) in (1
2 , 1).

Lemma 3.4. Consider a node i ∈ V1. Fix t ≥ 0.

(a) If b ≥ 1, for every xi(t) ∈ (1
2 , 1), xi(t+ 1) > xi(t).

(b) If 1 > b ≥ 2
hG+1 , there exists a unique solution, say x̂, to Eq.(3.3) in (1

2 , 1).

(c) If b < 2
hG+1 , for every xi(t) ∈ (1

2 , 1), xi(t+ 1) < xi(t).
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Proof of Lemma 3.4. Consider the function f : [0, 1]→ R defined as

f(y; b) :=


1, y ∈ [0, 1], b = 1
0, y ∈ [0, 1], b = 2

2
b − 1, y = 1

2 , b > 0
(y)2−b−(1−y)2−b

y(1−y)1−b−y1−b(1−y) , otherwise

(3.4)

We will first prove a few properties of f and then use those properties to prove Lemma 3.4.

Proposition 3.1. 1. For all b > 0, f is continuous over [0, 1].

2. If 0 < b < 1, f is strictly increasing over [12 , 1].

3. If b ≥ 1, for all y ∈ [0, 1), f(y; b) ≤ 1.

Proof. 1. Observe that f is continuous when b = 1 or b = 2. So, we only need to show that
f is continuous at y = 1

2 when b 6= 1 and b 6= 2. Let p(y; b) := (y)2−b − (1 − y)2−b and
q(y; b) := y(1 − y)1−b − y1−b(1 − y). Observe that when b 6= 1 and b 6= 2, both p and q are
differentiable on [0, 1]. For y ∈ [0, 1],

p′(y; b) = (2−b)(y1−b+(1−y)1−b); q′(y; b) = (1−y)1−b−(1−b)y(1−y)−b−(1−b)y−b(1−y)+y1−b

Therefore,

lim
y→1/2

p′(y; b)
q′(y; b)

= lim
y→1/2

(2− b)(y1−b + (1− y)1−b)
(1− y)1−b − (1− b)y(1− y)−b − (1− b)y−b(1− y) + y1−b =

2
b
− 1

(3.5)
So, we have that

lim
y→1/2

f (y; b) = lim
y→1/2

p(y; b)
q(y; b)

= lim
y→1/2

p′(y)
q′(y)

(using L’Hôpital’s rule) =
2
b
− 1 (from (3.5)) = f(

1
2

; b)

Therefore, when b 6= 1 and b 6= 2, f is continuous at 1
2 .

2. Assume 0 < b < 1. Fix y1, y2 ∈ [12 , 1] such that y1 > y2. We will show that f(y1; b) > f(y2; b).
For conciseness of expression, define ȳ1 := 1− y1 and ȳ2 := 1− y2. Then

y1y2 − y1ȳ2 > (y1y2)1−b − (y1ȳ2)1−b (3.6)

Similarly,
ȳ1y2 − ȳ1ȳ2 > (ȳ1y2)1−b − (ȳ1ȳ2)1−b (3.7)

Adding (3.6) and (3.7), we get

y1y2 − y1ȳ2 + ȳ1y2 − ȳ1ȳ2 > (y1y2)1−b − (y1ȳ2)1−b + (ȳ1y2)1−b − (ȳ1ȳ2)1−b

Or equivalently,

(y1y2 − ȳ1ȳ2)−
(

(y1y2)1−b − (ȳ1ȳ2)1−b
)
> (y1ȳ2 − ȳ1y2)−

(
(y1ȳ2)1−b − (ȳ1y2)1−b

)
(3.8)

Moreover, since y1, y2 ∈ [12 , 1] and y1 > y2,

y1y2 − ȳ1ȳ2 > 0; (y1y2)1−b − (ȳ1ȳ2)1−b > 0; y1ȳ2 − ȳ1y2 > 0; (y1ȳ2)1−b − (ȳ1y2)1−b > 0 (3.9)
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(3.8) and (3.9) imply that

y1y2 − ȳ1ȳ2

y1ȳ2 − ȳ1y2
>

(y1y2)1−b − (ȳ1ȳ2)1−b

(y1ȳ2)1−b − (ȳ1y2)1−b

Rearranging, we get

(y1)2−b − ȳ1
2−b

y1ȳ1
1−b − y1−b

1 ȳ1

= f(y1; b) >
(y2)2−b − ȳ2

2−b

y2ȳ2
1−b − y1−b

2 ȳ2

= f(y2; b)

3. Since f is symmetric about y = 1
2 , we will prove the theorem for y ∈ [12 , 1). Fix y ∈ [12 , 1).

Observe that when b ≥ 1, (1− y)1−b ≥ y1−b (since y ≥ 1− y). Equivalently

y(1− y)1−b ≥ y2−b (3.10)

For the same reason,
y1−b(1− y) ≤ (1− y)2−b (3.11)

From (3.10) and (3.11), it follows that

y(1− y)1−b − y1−b(1− y) ≥ (y)2−b − (1− y)2−b

or equivalently, f(y; b) ≤ 1.

Using these properties of f we will prove Lemma 3.4.

1. If b ≥ 1, then for all y ∈ [0, 1), f(y; b) ≤ 1 (by Proposition 3.1) < hG. Therefore, for y ∈ [12 , 1),

(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
< hG

⇔ y2−b − (1− y)2−b < hG(y(1− y)1−b − y1−b(1− y))

⇔ y2−b + hGy
1−b(1− y) < (1− y)2−b + hGy(1− y)1−b

⇔ y1−b(y + (1− y)hG) < (1− y)1−b((1− y) + hGy)

⇔ y

1− y
<

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG

For y = xi(t), the right hand side of the last inequality above is equal to xi(t+1)/(1−xi(t+1)),
implying that xi(t+ 1) > xi(t).

2. If 1 > b ≥ 2
hG+1 , then observe that f(1

2 ; b) = 2
b − 1 ≤ hG < f(1; b) = ∞. Since f is a

continuous function (by Proposition 3.1), therefore, by the intermediate value theorem, there
must exist a ŷ ∈ [12 , 1) such that f(ŷ; b) = hG. Equivalently,

(ŷ)2−b − (1− ŷ)2−b

ŷ(1− ŷ)1−b − ŷ1−b(1− ŷ)
= hG

Rearranging the above expression, we get

ŷ

1− ŷ
=
(

ŷ

1− ŷ

)b
· (1− ŷ) + hGŷ

ŷ + (1− ŷ)hG

Again, for ŷ = xi(t), we have that xi(t+ 1) = xi(t). The uniqueness of x̂ follows from the fact
that, by Proposition 3.1, f is strictly increasing over (1

2 , 1].
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3. If b < 2
hG+1 , then for all y ∈ [12 , 1], f(y; b) ≥ f(1

2 ; b) (by Proposition 3.1) = 2
b − 1 > hG. In

other words,
(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
> hG

Again, rearranging the above expression, we get

y

1− y
>

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG

Again, for y = xi(t), the right hand side of the last inequality above is equal to xi(t + 1),
implying that xi(t+ 1) < xi(t).

This concludes the proof of Lemma 3.4.

Next we will prove Theorem 3 for the case of persistent disagreement, the cases of polarization
and consensus are limiting cases of that case as b → 1 and b → 2/(hG + 1) respectively. We will
show that when 1 > b ≥ 2

hG+1 , the value x̂ defined in Lemma 3.4(b) is a stable equilibrium. The
other two cases can be formally proven using an argument similar to the one below. Next we will
show that when 1 > b ≥ 2

hG+1 , the sequence {xi(t)} is bounded.

Lemma 3.5. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).

1. If x0 < x̂, then for all t > 0, xi(t) < x̂.

2. If x0 > x̂, then for all t > 0, xi(t) > x̂.

Proof of Lemma 3.5. We will prove statement (1). Statement (2) can be proven using a similar
argument.

Proof by induction.
Induction hypothesis: Assume that the lemma statement holds for some t ≥ 0, i.e., assume that

xi(t) < x̂ for some t ≥ 0.
Base case: The statement holds for t = 0 by assumption.
We will show that the lemma statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
<

(x̂)b

(1− x̂)b
si(t)

di − si(t)
(since

1
2
< xi(t) < x̂, and b > 0)

Observe that since xi(t) < x̂ and ps > pd, si(t) = n(psxi(t) + pd(1 − xi(t))) < n(psx̂ + pd(1 − x̂)).
Therefore,

si(t)
di − si(t)

<
psx̂+ pd(1− x̂)
ps(1− x̂) + pdx̂

As a result,

xi(t+ 1)
1− xi(t+ 1)

<
(x̂)b

(1− x̂)b
psx̂+ pd(1− x̂)
ps(1− x̂) + pdx̂

=
x̂

1− x̂
(by definition of x̂)

This implies xi(t+ 1) < x̂. This completes the inductive proof.

Next we will prove that when 1 > b ≥ 2
hG+1 , the sequence {xi(t)} is monotone.

Lemma 3.6. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).
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1. If x0 < x̂, the sequence {xi(t)} is strictly increasing.

2. If x0 > x̂, the sequence {xi(t)} is strictly decreasing.

Proof of Lemma 3.6. We will prove statement (1); statement (2) can be proven using a similar
argument.

Assume x0 < x̂. Then, from Lemma 3.5, we know that for all t ≥ 0, xi(t) < x̂. Fix t ≥ 0.
Let xi(t) = y < x̂. Recall that by definition of x̂, if xi(t) = x̂, xi(t + 1) = xi(t). Equivalently,
f(x̂; b) = hG, where f is defined by (3.4). From Proposition 3.1, we know that f is strictly increasing
over the interval (1

2 , x̂). Therefore, f(y; b) < f(x̂; b) = hG. Equivalently,

(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
< hG

Rearranging, we get

y

1− y
<

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG
=

xi(t+ 1)
1− xi(t+ 1)

Equivalently, xi(t+ 1) > xi(t).

Using the fact that the sequence {xi(t)} is monotone and bounded, next we will prove that it
converges to x̂.

Lemma 3.7. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).
Then, limt→∞ xi(t) = x̂.

Proof. For the proof, we will assume that the initial opinion xi(0) = x0 ≤ x̂. The case when x0 > x̂
can be argued in an analogous way.

Observe that if x0 = x̂, then by Lemma 3.4, it follows that for all t ≥ 0, xi(t+ 1) = x̂, and we
are done. So let us assume that 1

2 < x0 < x̂. From Lemma 3.5 and Lemma 3.6, we know that the
sequence {xi(t)} is strictly increasing and bounded. This implies that the sequence must converge
either to x̂ or to some value in the interval [x0, x̂). Consider the function g : [0, 1]→ R defined as

g(y) :=
yb(hGy + (1− y))

yb(hGy + (1− y) + (1− y)b(hG(1− y) + y)
− y

Observe that for all t ≥ 0, xi(t+ 1)− xi(t) = g(xi(t)). Therefore,

(a) for all y ∈ (1
2 , x̂), g(y) > 0 (since, by Lemma 3.6, the sequence {xi(t)} is strictly increasing),

and

(b) g(x̂) = 0 (by definition of x̂).

For the purpose of contradiction, assume that limt→∞ xi(t) = a, where x0 ≤ a < x̂. This implies,
for every ε > 0, there exists a t(ε) such that for all t ≥ t(ε), xi(t + 1) − xi(t) < ε, or equivalently,
that for all t ≥ t(ε), g(xi(t)) < ε.

Let miny∈[x0,a] g(y) = c. It implies for all y ∈ [x0, a], g(y) ≥ c. From (a), it follows that c > 0.
Setting ε = c, our analysis implies the following two properties of g: (1) for all t ≥ 0, g(xi(t)) ≥ c,
and (2) for all t ≥ t(ε), g(xi(t)) < c, which contradict each other. This completes the proof by
contradiction.

This completes the proof of Theorem 3.
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4 Two-island Networks with Non-homogeneous Opinions

In this section, we prove a less restrictive version of the polarization result in Theorem 3, which does
not require that the initial opinions in each island be homogeneous. We show that in a two-island
network, if the bias parameter b ≥ 1 and the initial opinions of the two islands are sufficiently
far apart relative to the homophily index hG, then the biased opinion formation process results in
polarization.

Theorem 4.1. Let G = (V1, V2, E, w) be a (n, n, ps, pd)-two island network. For all (i, j) ∈ E, let
wij = 1. Fix ε ∈ (0, 1

2 ]. Assume for all i ∈ V1, xi(0) ≥ 1
2 +ε and for all i ∈ V2, xi(0) ≤ 1

2−ε. Assume
for all i ∈ V , the bias parameter bi = b ≥ 1. Then, if ε > 1

2hG
, for all i ∈ V1, limt→∞ xi(t) = 1, and

for all i ∈ V2, limt→∞ xi(t) = 0.

Proof. We will show that the opinions of individuals in V1 are strictly increasing whereas that of
individuals in V2 are strictly decreasing.

Lemma 4.1. Fix t ≥ 0. Then,

1. For all i ∈ V1, if xi(t) ∈ [12 + ε, 1), then xi(t+ 1) > xi(t).

2. For all i ∈ V2, if xi(t) ∈ (0, 1
2 − ε], then xi(t+ 1) < xi(t).

Proof. We will prove Statement 1 of the lemma. Statement 2 can be proven using an analogous
argument. Fix an individual i ∈ V1.

xi(t+ 1)
1− xi(t+ 1)

=
wiixi(t) + xi(t)bsi(t)

wii(1− xi(t)) + (1− xi(t))b(di − si(t))

=
wiixi(t) + xi(t)b

(∑
j∈N(i)∩V1

xj(t) +
∑

j∈N(i)∩V2
xj(t)

)
wii(1− xi(t)) + (1− xi(t))b

(∑
j∈N(i)∩V1

(1− xj(t)) +
∑

j∈N(i)∩V2
(1− xj(t))

)
Observe that

∑
j∈N(i)∩V1

xj(t) ≥ nps
(

1
2 + ε

)
and

∑
j∈N(i)∩V2

(1− xj(t)) ≤ npd. Therefore,

xi(t+ 1)
1− xi(t+ 1)

≥
wiixi(t) + xi(t)b

(
nps

(
1
2 + ε

)
+ 0
)

wii(1− xi(t)) + (1− xi(t))b
(
nps

(
1
2 − ε

)
+ npd

)
=

wiixi(t) + xi(t)b
(

1
2 + ε

)
wii(1− xi(t)) + (1− xi(t))b

(
1
2 − ε+ 1

hG

)
>

wiixi(t) + xi(t)b

wii(1− xi(t)) + (1− xi(t))b
(since ε >

1
2hG

)

>
xi(t)

1− xi(t)
(since xi(t) >

1
2

and b ≥ 1)

Or equivalently, xi(t+ 1) > xi(t).

Next we will show that for an individual i ∈ V1, xi(t) ∈ [12 + ε, 1] for all t ≥ 0, and for an
individual i ∈ V2, xi(t) ∈ [0, 1

2 − ε] for all t ≥ 0.

Lemma 4.2. 1. Fix individual i ∈ V1. For all t ≥ 0, xi(t) ∈ [12 + ε, 1].

2. Fix individual i ∈ V2. For all t ≥ 0, xi(t) ∈ [0, 1
2 − ε].
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Proof. We will prove Statement 1 of the lemma. Statement 2 can be proven using an analogous
argument. Proof by induction on t.

Base case: The statement holds for t = 0 by assumption.
Induction hypothesis: Assume that the statement holds for some t ≥ 0.
We will show that the statement holds for t + 1. If xi(t) = 1, then xi(t′) = 1 for all t′ ≥ t,

and we are done. So let us assume xi(t) < 1. Then, by Lemma 4.1, xi(t + 1) > xi(t). Therefore,
xi(t + 1) ∈ [12 + ε, 1]. Therefore, the statement holds for t + 1. This concludes the proof by
induction.

Next we will show that for an individual i ∈ V1, limt→∞ xi(t) = 1. The corresponding statement
for individuals in V2 can be proven using an analogous argument.

Lemma 4.3. Fix an individual i ∈ V1. Then, limt→∞ xi(t) = 1.

Proof. The proof is along the same lines as that for Lemma 3.7. Again, observe that if xi(t) = 1,
then for all t′ ≥ t, xi(t′) = 1, and we are done. Define a function g : [12 + ε, 1]→ R, as follows:

g(y) :=
wiiy + yb

(
1
2 + ε

)
wii + yb

(
1
2 + ε

)
+ (1− y)b

(
1
2 − ε+ 1

hG

)− y
Observe that for all t ≥ 0, for all xi(t) ∈ [12 + ε, 1), xi(t + 1) − xi(t) ≥ g(xi(t)) > 0. Moreover,
g(1) = 0. For the purpose of contradiction, assume that limt→∞ xi(t) = a, where 1

2 + ε ≤ a < 1.
This implies, for every δ > 0, there exists a t(δ) such that for all t ≥ t(δ), xi(t + 1) − xi(t) < δ,
which implies that for all t ≥ t(δ), g(xi(t)) < δ.

Let miny∈[ 1
2
+ε,a] g(y) = c. It implies for all y ∈ [12 + ε, a], g(y) ≥ c. Since g(y) > 0 for

y ∈ [12 + ε, 1), it follows that c > 0. Setting δ = c, our analysis implies the following two properties
of g: (1) for all t ≥ 0, g(xi(t)) ≥ c, and (2) for all t ≥ t(δ), g(xi(t)) < c, which contradict each other.
This completes the proof by contradiction.

5 Proof of Theorem 4

Let |S(t)| = k. Then, the opinion update under the flocking process can be written in matrix form
as

x(t+ 1) = (1− ε)x(t) + εA(t)x(t)

where A(t) is a n× n matrix given by

Aij(t) =


1
k , if i ∈ S(t), j ∈ S(t)
1, if i = j and i /∈ S(t)
0, otherwise

Observe that A(t) is doubly-stochastic. Then

γ(x(t+ 1)) = γ((1− ε)x(t) + εA(t)x(t)) (by definition of x(t+ 1))
≤ (1− ε)γ(x(t)) + εγ(A(t)x(t)) (since γ is convex in x)
≤ (1− ε)γ(x(t)) + εγ(x(t)) (by Proposition 5.1)
= γ(x(t))
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Proposition 5.1. γ(A(t)x(t)) ≤ γ(x(t)).

Proof. Let y := A(t)x(t). Since A(t) is doubly stochastic, it follows by a famous theorem by Hardy,
Littlewood and Polya, that x(t) majorizes y. Moreover, γ(x) is a convex symmetric function.
Therefore, it is a Schur-convex function. By definition, a function f : Rn → R is Schur-convex if
f(x1) ≥ f(x2) whenever x1 majorizes x2. Therefore, γ(y) ≤ γ(x(t)).

6 Proofs of Theorems on Recommender Systems and Polarization

In this section we prove Theorem 5 and Theorem 6 from the main paper. Both theorems rely on the
following technical lemma that invokes the Strong Law of Large Numbers to show that the random
quantities we care about all take their expected values with probability 1 as n→∞.

Lemma 6.1. In the limit as n→∞, with probability 1,

(a) for all i ∈ V1, |N(i)| → k,

(b) for all i ∈ V1,
∑

j1∈V2
j1 is RED

Zij1 → xik,

(c) for all i ∈ V1,
∑

j1∈V2
j2 is BLUE

Zij2 → (1− xi)k,

(d) for all j ∈ V2, |N(j)| → mk
2n ,

(e) for every pair of RED books j, j′ ∈ V2,Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
+Var(x1))

n2 ,

(f) for every pair of BLUE books j, j′ ∈ V2,Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
+Var(x1))

n2 , and

(g) for every RED book j and every BLUE book j′, Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
−Var(x1))

n2 .

Proof. Recall that as n → ∞, m = f(n) → ∞. So statements (a) through (g) follow from the
Strong Law of Large Numbers.

Using Lemma 6.1, we will first prove Theorem 6.

6.1 Proof of Theorem 6

Lemma 6.2. In the limit as n → ∞, SimpleSALSA is polarizing with respect to i if and only if i
is biased.

Proof. Assume without loss of generality that xi > 1
2 .

Let pr be the probability that SimpleSALSA recommends a RED book. The proof consists of
two steps: first we show that pr > 1

2 and pr ≤ xi, and then we show that if pr > 1
2 and pr ≤ xi,

13



SimpleSALSA is polarizing with respect to i if and only if i is biased.

pr =
∑

j∈V2:j2 is RED

P[i 3−→ j]

=
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]
∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

P[i 1−→ j2]
∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑

j1∈N(i)
j1 is RED

1
|N(i)|

∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

1
|N(i)|

∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈N(j1)∩N(j)

1
|N(j1)|

1
|N(i′)|

+
∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

∑
i′∈N(j2)∩N(j)

1
|N(j2)|

1
|N(i′)|

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|

+
∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j2Zi′j
|N(j2)||N(i′)|

By Lemma 6.1, in the limit as n→∞, with probability 1,∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|

→ xi
1

k ·mk/2n
n
mk2(1

4 + Var(x1))
n2

= xi

(
1
2

+ 2Var(x1)
)

and∑
j2∈V2

j2 is BLUE

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j2Zi′j
|N(j2)||N(i′)|

→ (1−xi)
1

k ·mk/2n
n
mk2(1

4 −Var(x1))
n2

= (1−xi)
(

1
2
− 2Var(x1)

)

Therefore, in the limit as n→∞, with probability 1,

pr → xi

(
1
2

+ 2Var(x1)
)

+ (1− xi)
(

1
2
− 2Var(x1)

)
Since xi > 1

2 (by assumption), and Var(x1) > 0 (by assumption), we have that

pr >
1
2

and pr ≤ xi (6.1)

First, assume that i is unbiased. Let p be the probability that i accepts the recommendation. There-
fore, the probability that the recommended book was RED given that i accepted the recommendation
is given by

prp

prp+ (1− pr)p
= pr ≤ xi

Therefore, SimpleSALSA is not polarizing.
Now, assume that i is biased. This implies i accepts the recommendation of a RED book with

probability xi and that of a BLUE book with probability 1− xi. Therefore, the probability that the
recommended book was RED given that i accepted the recommendation is given by

prxi
prxi + (1− xi)(1− pr)

>
prxi

prxi + pr(1− xi)
(since pr >

1
2

, from (6.1)) = xi
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Therefore, by definition, SimpleSALSA is polarizing. Recall that our definition of a biased individual
in this section corresponds to b = 1. Consider the general case, where i accepts the recommendation
of a RED book with probability xbi and accepts that of a BLUE book with probability (1−xi)b, where
b ≥ 0. Then, the probability that the recommended book was RED given that i accepted the
recommendation is given by

prx
b
i

prxbi + (1− xi)b(1− pr)
If b ≥ 1, then

prx
b
i

prxbi + (1− xi)b(1− pr)
>

prxi
prxi + (1− xi)(1− pr)

(since xi >
1
2

and b ≥ 1)

>
prxi

prxi + pr(1− xi)
(since pr >

1
2

, from (6.1))

= xi

This shows that SimpleSALSA is polarizing for any b ≥ 1.

Lemma 6.3. In the limit as n → ∞ and as T → ∞, SimpleICF is polarizing with respect to i if
and only if i is biased.

Proof. Assume without loss of generality that xi > 1
2 .

Let pr be the probability that SimpleICF recommends a RED book. For a node j ∈ N(i), let
qjRED be the probability that after T two-step random walks starting at j, the node with the largest
value of count(j), i.e., j∗, is RED, and qjBLUE be the corresponding probability that j∗ is BLUE. Then,

pr =
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]qj1RED +
∑

j2∈N(i)
j2 is BLUE

P[i 1−→ j2]qj2RED

=
∑

j1∈N(i)
j1 is RED

1
|N(i)|

qj1RED +
∑

j2∈N(i)
j2 is BLUE

1
|N(i)|

qj2RED

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

qj1RED +
∑
j2∈V2

j2 is BLUE

Zij1
|N(i)|

qj2RED

Consider T two-step random walks starting at a node j1 ∈ N(i). Observe that qj1RED is exactly the
probability that after these T random walks, there exists a RED node, say j, such that count(j) >
count(j’) for all BLUE nodes j′. However, as T →∞,

P[for all BLUE books j′ ∈ V2, count(j) > count(j’)] = P[for all BLUE books j′ ∈ V2, P[j1
2−→ j] > P[j1

2−→ j′]]

since as T →∞, count(j)→ T · P[j1
2−→ j] (by the Strong Law of Large Numbers). Therefore,

qj1RED = P[for all BLUE books j′ ∈ V2, P[j1
2−→ j] > P[j1

2−→ j′]]

Observe that for two RED books j1 and j,

P[j1
2−→ j] =

∑
i′∈N(j1)∩N(j)

1
|N(j1)|

1
|N(i′)|

=
∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|
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By Lemma 6.1, in the limit as n→∞, with probability 1,

P[j1
2−→ j]→ 1

k

1
mk/2n

mk2(1
4 + Var(x1))
n2

=
1
n

(
1
2

+ 2Var(x1)
)

Similarly, for a BLUE book j′, in the limit as n→∞, with probability 1,

P[j1
2−→ j′]→ 1

k

1
mk/2n

mk2(1
4 −Var(x1))
n2

=
1
n

(
1
2
− 2Var(x1)

)
Since Var(x1) > 0, in the limit as n → ∞, P[j1

2−→ j] > P[j1
2−→ j′] with probability 1. Therefore,

qj1RED = 1. By symmetry qj2RED = 1 − qj2BLUE = 0. Moreover, by Lemma 1, in the limit as
n→∞,

∑
j1∈V2
j1 is RED

Zij1
|N(i)| = xi, with probability 1. Therefore, as n→∞,

pr = xi (6.2)

The rest of the analysis is identical to Lemma 6.2.

This completes the proof of Theorem 6.

6.2 Proof of Theorem 5

Assume, without loss of generality, that xi > 1
2 .

Let pr be the probability that SimplePPR recommends a RED book to i. This probability is
exactly equal to the probability that after T three-step random walks starting at i there exists a
RED node, say j, such that such that count(j) > count(j’) for all BLUE nodes j′. However, as
T →∞,

P[for all BLUE books j′ ∈ V2, count(j) > count(j’)] = P[for all BLUE books j′ ∈ V2, P[i 3−→ j] > P[i 3−→ j′]]

since as T →∞, count(j)→ T ·P[i 3−→ j] with probability 1 (by the Strong Law of Large Numbers).
Therefore,

pr = P[for all BLUE books j′ ∈ V2, P[i 3−→ j] > P[i 3−→ j′]]

For a RED book j ∈ V2,

P[i 3−→ j] =
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

P[i 1−→ j2]P[j2
2−→ j]

P[i 3−→ j] =
∑

j1∈N(i)
j1 is RED

1
|N(i)|

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

1
|N(i)|

P[j2
2−→ j]

P[i 3−→ j] =
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

P[j1
2−→ j] +

∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

P[j2
2−→ j]

As we showed in the proof of Lemma 6.3, in the limit as n→∞,

P[j1
2−→ j]→ 1

n

(
1
2

+ 2Var(x1)
)

and (by symmetry) P[j2
2−→ j]→ 1

n

(
1
2
− 2Var(x1)

)
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with probability 1. Moreover, by Lemma 1, in the limit as n → ∞,
∑

j1∈V2
j1 is RED

Zij1
|N(i)| → xi, with

probability 1. Therefore, with probability 1,

P[i 3−→ j]→ xi
n

(
1
2

+ 2Var(x1)
)

+
1− xi
n

(
1
2
− 2Var(x1)

)
Similarly, for a BLUE book j′ ∈ V2, in the limit as n→∞, with probability 1,

P[i 3−→ j′]→ xi
n

(
1
2
− 2Var(x1)

)
+

1− xi
n

(
1
2

+ 2Var(x1)
)

Since xi > 1
2 and Var(x1) > 0,

P[i 3−→ j] > P[i 3−→ j′]

with probability 1. In other words, pr = 1. Consider the general definition of a biased individual,
where individual i accepts the recommendation of a RED book with probability xbi and accepts that
of a BLUE book with probability (1−xi)b, where b ≥ 0. Then, the probability that the recommended
book was RED given that i accepted the recommendation is given by

prx
b
i

prxbi + (1− xi)b(1− pr)

Since pr = 1, the probability that a book recommended by SimplePPR was RED given that it was
accepted is exactly pr for all b ≥ 0. Therefore, SimplePPR is polarizing for all b ≥ 0.
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